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Collaborative Filtering (CF) 

• The most prominent approach to generate 
recommendations 
– used by large, commercial e-commerce sites 

– well-understood, various algorithms and variations exist 

– applicable in many domains (book, movies, DVDs, ..) 

• Approach 
– use the "wisdom of the crowd" to recommend items 

• Basic assumption and idea 
– Users give ratings to catalog items (implicitly or explicitly) 

– Customers who had similar tastes in the past, will have 
similar tastes in the future 

 

 



User-based nearest-neighbor 
collaborative filtering  

• The basic technique: 

– Given an "active user" (Alice) 
and an item I not yet seen by 
Alice 

– The goal is to estimate Alice's 
rating for this item, e.g., by 
• find a set of users (peers) who 

liked the same items as Alice 
in the past and who have 
rated item I 

• use, e.g. the average of their 
ratings to predict, if Alice will 
like item I 

• do this for all items Alice has 
not seen and recommend the 
best-rated 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 

User
1 

3 1 2 3 3 

User
2 

4 3 4 3 5 

User
3 

3 3 1 5 4 

User
4 

1 5 5 2 1 



User-based nearest-neighbor 
collaborative filtering 

• Some first questions 

– How do we measure similarity? 

– How many neighbors should we consider? 

– How do we generate a prediction from the 
neighbors' ratings? 

 



Measuring user similarity 

• A popular similarity measure in user-based CF: 
Pearson correlation 

  

a, b  : users 

ra,p     : rating of user a for item p 

P    : set of items, rated both by a and b 

Possible similarity values between -1 and 1;  
 = user's average ratings 
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Pearson correlation 

• Takes differences in rating behavior into account 
 
 
 
 
 
 
 
 
 

• Works well in usual domains, compared with alternative measures 
– such as cosine similarity 
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Making predictions 

• A common prediction function: 

 

 

 

• Calculate, whether the neighbors' ratings for the 
unseen item i are higher or lower than their average 

• Combine the rating differences – use the similarity as a 
weight 

• Add/subtract the  neighbors' bias from the active user's 
average and use this as a prediction 



Making recommendations 

• Making predictions is typically not the ultimate 
goal 

• Usual approach (in academia) 
– Rank items based on their predicted ratings 

• However 
– This might lead to the inclusion of (only) niche items 
– In practice also: Take item popularity into account 

• Approaches 
– "Learning to rank"  

• Optimize according to a given rank evaluation metric (see 
later) 



Improving the metrics  / prediction 
function 

• Not all neighbor ratings might be equally "valuable" 
– Agreement on commonly liked items is not so informative as 

agreement on controversial items 
– Possible solution:  Give more weight to items that have a higher 

variance 

• Value of number of co-rated items 
– Use "significance weighting", by e.g., linearly reducing the 

weight when the number of co-rated items is low  

• Case amplification 
– Intuition: Give more weight to "very similar" neighbors, i.e., 

where the similarity value is close to 1. 

• Neighborhood selection 
– Use similarity threshold or fixed number of neighbors 



Item-based CF 

• Scalability issues arise with U2U if many more users 
than items  
(m >> n , m = |users|, n = |items|) 
– e.g. Amazon.com 
– Space complexity O(m2) when pre-computed 
– Time complexity for computing Pearson O(m2n) 

 
• High sparsity leads to few common ratings between 

two users 
 

• Basic idea: "Item-based CF exploits relationships 
between items first, instead of relationships between 
users" 
 



Item-based collaborative filtering 

• Basic idea:  
– Use the similarity between items (and not users) to make predictions 
– Treat ratings as item features (big assumption) 

• Example:  
– Look for items that are similar to Item5 
– Take Alice's ratings for these items to predict the rating for Item5 

 

Item1 Item2 Item3 Item4 Item5 

Alice 5 3 4 4 ? 

User1 3 1 2 3 3 

User2 4 3 4 3 5 

User3 3 3 1 5 4 

User4 1 5 5 2 1 



The cosine similarity measure 

• Produces better results in item-to-item filtering 
– for some datasets, no consistent picture in literature 

• Ratings are seen as vector in n-dimensional space 
• Similarity is calculated based on the angle between the 

vectors 
 
 

• Adjusted cosine similarity 
– take average user ratings into account, transform the 

original ratings 
– U: set of users who have rated both items a and b 

 
 
 



Pre-processing for item-based filtering 

• Item-based filtering does not solve the scalability problem itself 
• Pre-processing approach by Amazon.com (in 2003) 

– Calculate all pair-wise item similarities in advance 
– The neighborhood to be used at run-time is typically rather small, 

because only items are taken into account which the user has rated 
– Item similarities are supposed to be more stable than user similarities 

• Memory requirements 
– Up to N2 pair-wise similarities to be memorized (N = number of items) 

in theory 
– In practice, this is significantly lower (items with no co-ratings) 
– Further reductions possible 

• Minimum threshold for co-ratings (items, which are rated at least by n users) 
• Limit the size of the neighborhood (might affect recommendation accuracy) 

 



More about ratings 

• Pure CF-based systems only rely on the rating matrix 
• Explicit ratings 

– Most commonly used (1 to 5, 1 to 7 Likert response scales) 
– Research topics 

• "Optimal" granularity of scale; indication that 10-point scale is better 
accepted in movie domain 

• Multidimensional ratings (multiple ratings per movie) 

– Challenge 
• Users not always willing to rate many items; sparse rating matrices 
• How to stimulate users to rate more items?  

• Implicit ratings 
– clicks, page views, time spent on some page, demo downloads … 
– Can be used in addition to explicit ones; question of correctness of 

interpretation 
 
 



Data sparsity problems 

• Cold start problem 
– How to recommend new items? What to recommend to new 

users? 

• Straightforward approaches 
– Ask/force users to rate a set of items 
– Use another method (e.g., content-based, demographic or 

simply non-personalized) in the initial phase 

• Alternatives 
– Use better algorithms (beyond nearest-neighbor approaches) 
– Example:  

• In nearest-neighbor approaches, the set of sufficiently similar 
neighbors might be to small to make good predictions 

• Assume "transitivity" of neighborhoods 

 



Example algorithms for sparse 
datasets 

• Recursive CF 

– Assume there is a very close neighbor n of u who 
however has not rated the target item i yet. 

– Idea:  

• Apply CF-method recursively and predict a rating for 
item i for the neighbor 

• Use this predicted rating instead of the rating of a more 
distant direct neighbor 



Contrast – u2u vs i2i 

p = avg number of ratings per user 
q = avg number of ratings per item 



Contrast – u2u vs i2i 

U2U I2I 

Accuracy |U|<<|I| |U|>>|I| 

Efficiency |U|<<|I| |U|>>|I| 

Stability Static users Static items 

Justifiability Always better 

Serendipity Always better 

Shared problems: coverage, sparsity 



Memory-based vs model-based 
approaches 

• Both u2u and i2i CF are "memory-based" 
– the rating matrix is directly used to find neighbors / make 

predictions 
– does not scale for most real-world scenarios 
– large e-commerce sites have tens of millions of customers and 

millions of items 

• Model-based approaches 
– based on an offline pre-processing or "model-learning" phase 
– at run-time, only the learned model is used to make predictions 
– models are updated / re-trained periodically 
– large variety of techniques used  
– model-building and updating can be computationally expensive 



Model-based approaches 

• Plethora of different techniques proposed in the last 
years, e.g., 
– Matrix factorization techniques, statistics 

• singular value decomposition, principal component analysis 

– Association rule mining 
• compare: shopping basket analysis 

– Probabilistic models 
• clustering models, Bayesian networks, probabilistic Latent 

Semantic Analysis 

– Various other machine learning approaches 

• Costs of pre-processing  
– Usually not discussed 
– Incremental updates possible? 



CFs using matrix factorization 

• Basic idea: Trade more complex offline model 
building for faster online prediction generation 

• Singular Value Decomposition for dimensionality 
reduction of rating matrices 
– Captures important factors/aspects and their weights in the data    

– factors can be genre, actors but also non-understandable ones 

– Assumption that k dimensions capture the signals and filter out noise (K = 20 to 100) 

• Constant time to make recommendations 

• Approach also popular in IR (Latent Semantic 
Indexing), data compression, … 

 



SVD: basic intuition 
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Linear transformations 

• F(u + v) = F(u) +F(v) 

• F(cu) = cF(u) 

 



Matrices represent linear transforms 

• A linear map Rn  Rm is equivalent to an n-
by-m matrix 

• What does this matrix do? 

 

• It transforms the unit square 

– Transformation clarifies the role of matrices as 
linear maps 



Matrices as instruction lists 

https://en.wikipedia.org/wiki/File:VerticalShear_m=1.25.svg
https://en.wikipedia.org/wiki/File:Flip_map.svg
https://en.wikipedia.org/wiki/File:Squeeze_r=1.5.svg
https://en.wikipedia.org/wiki/File:Scaling_by_1.5.svg
https://en.wikipedia.org/wiki/File:Rotation_by_pi_over_6.svg


Eigenvalues and eigenvectors 

• Eigenvalue definition Ax = λx 
• Calculation: solutions of |A - λI| = 0 
• Apply solutions to original equation to calculate 

eigenvectors (A- λI)v = 0 
• Set of eigenvectors, along with the null set, forms 

the eigenbasis of a matrix 
• What does it mean? 
• Special simplified instruction set that is 

equivalent to the original instruction set 
–  but implemented using only scaling 

 



Eigendecomposition 

• Writing out the transformation operation using 
its basic components 

• A = ELE-1 

– E is a matrix with each column an eigenvector 

– L is a diagonal matrix, with each non-zero element an 
eigenvalue 

• Can arrange this in decreasing order of 
eigenvalue magnitude 

• What happens when we set the smaller 
eigenvalues to zero? 



Latent factor models via matrices 

• Factorize n x n matrix A as a product of two matrices B,C such that 
– B = EL1/2 

– CT = E-1L1/2 

• Can approximate A using Bk and Ck that consider only the top k 
eigenvalues 
– err(k) = |A – BCT|2 F 

• Can generalize to non-square matrices 
– Singular value decomposition 
– Decompose A into UΣVT 

– U,V are matrices of singular vectors, Σ is a diagonal matrix that 
contains singular values 
• Singular vectors of A are eigenvectors of ATA and AAT 

• Non-zero singular values of A are square roots of non-zero eigenvalues of AAT 

 
 

 



SVD: basic intuition 
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Typical SVD application 

Vk
T 

Dim1 -0.44 -0.57 0.06 0.38 0.57 

Dim2 0.58 -0.66 0.26 0.18 -0.36 

Uk Dim1 Dim2 

Alice 0.47 -0.30 

Bob  -0.44 0.23 

Mary 0.70 -0.06 

Sue 0.31 0.93 Dim1 Dim2 

Dim1 5.63 0 

Dim2 0 3.23 

T

kkkk VUM 

k

• SVD: 

• Prediction:  

  = 3 + 0.84 = 3.84 

)()(ˆ EPLVAliceUrr T
kkkuui 



SVD concerns 

• User-rating matrix is often sparse 

• How to interpret missing values? 

– Interpreting as 0 induces bias 

– Filling with default values also induces bias 

• One solution- regularized learning 
• 𝑒𝑟𝑟 𝑘 =  𝑟𝑢𝑖 − 𝑝𝑢𝑞𝑖

2 + 𝛾 𝒑𝑢
2 + 𝒒𝑖

2
𝑢,𝑖 ∈ 𝑅  

 

 

 



Collaborative Filtering Issues 

• Pros:  
– well-understood, works well in some domains, no knowledge engineering required 

• Cons: 
– requires user community, sparsity problems, no integration of other knowledge sources, 

no explanation of results 

• What is the best CF method? 
– In which situation and which domain? Inconsistent findings; always the same domains 

and data sets; differences between methods are often very small (1/100) 

• How to evaluate the prediction quality? 
– MAE / RMSE: What does an MAE of 0.7 actually mean? 

– Serendipity: Not yet fully understood 

• What about multi-dimensional ratings? 



Other methods: association rule 
mining 

• Commonly used for shopping behavior analysis 
– aims at detection of rules such as 

 "If a customer purchases baby-food then he also 
buys diapers  
in 70% of the cases" 

• Association rule mining algorithms 
– can detect rules of the form X => Y (e.g., baby-food 

=> diapers) from a set of sales transactions D = {t1, 
t2, … tn} 

– measure of quality: support, confidence 



Other methods: Probabilistic methods 

• Treat users as mixtures of topics 

• Treat topics as distribution over item sample 
frequencies 

• Run LDA?  

• What could go wrong? 

 

 

 


