Collaborative filtering

Nisheeth

Collaborative Filtering (CF)

- The most prominent approach to generate recommendations
 - used by large, commercial e-commerce sites
 - well-understood, various algorithms and variations exist
 - applicable in many domains (book, movies, DVDs, ..)
- Approach
 - use the "wisdom of the crowd" to recommend items
- Basic assumption and idea
 - Users give ratings to catalog items (implicitly or explicitly)
 - Customers who had similar tastes in the past, will have similar tastes in the future

User-based nearest-neighbor collaborative filtering

- The basic technique:
 - Given an "active user" (Alice) and an item I not yet seen by Alice
 - The goal is to estimate Alice's rating for this item, e.g., by
 - find a set of users (peers) who liked the same items as Alice in the past **and** who have rated item I
 - use, e.g. the average of their ratings to predict, if Alice will like item I
 - do this for all items Alice has not seen and recommend the best-rated

	ltem1	ltem2	ltem3	ltem4	ltem5
Alice	5	3	4	4	?
User 1	3	1	2	3	3
User 2	4	3	4	3	5
User 3	3	3	1	5	4
User 4	1	5	5	2	1

User-based nearest-neighbor collaborative filtering

- Some first questions
 - How do we measure similarity?
 - How many neighbors should we consider?
 - How do we generate a prediction from the neighbors' ratings?

Measuring user similarity

• A popular similarity measure in user-based CF: **Pearson correlation** $sim(a,b) = \frac{\sum_{p \in P} (r_{a,p} - \bar{r}_a)(r_{b,p} - \bar{r}_b)}{\sqrt{\sum_{p \in P} (r_{a,p} - \bar{r}_a)^2} \sqrt{\sum_{p \in P} (r_{b,p} - \bar{r}_b)^2}}$

 $\overline{r_a}, \overline{r_b}$

- r_{a,p}: rating of user a for item p
- P : set of items, rated both by a and b

Possible similarity values between -1 and 1;

= user's average ratings

Pearson correlation

• Takes differences in rating behavior into account

- Works well in usual domains, compared with alternative measures
 - such as cosine similarity

Making predictions

• A common prediction function:

$$pred(a,p) = \overline{r_a} + \frac{\sum_{b \in N} sim(a,b) * (r_{b,p} - \overline{r_b})}{\sum_{b \in N} sim(a,b)}$$

- Calculate, whether the neighbors' ratings for the unseen item *i* are higher or lower than their average
- Combine the rating differences use the similarity as a weight
- Add/subtract the neighbors' bias from the active user's average and use this as a prediction

Making recommendations

- Making predictions is typically not the ultimate goal
- Usual approach (in academia)
 - Rank items based on their predicted ratings
- However
 - This might lead to the inclusion of (only) niche items
 - In practice also: Take item popularity into account
- Approaches
 - "Learning to rank"
 - Optimize according to a given rank evaluation metric (see later)

Improving the metrics / prediction function

- Not all neighbor ratings might be equally "valuable"
 - Agreement on commonly liked items is not so informative as agreement on controversial items
 - Possible solution: Give more weight to items that have a higher variance
- Value of number of co-rated items
 - Use "significance weighting", by e.g., linearly reducing the weight when the number of co-rated items is low
- Case amplification
 - Intuition: Give more weight to "very similar" neighbors, i.e., where the similarity value is close to 1.
- Neighborhood selection
 - Use similarity threshold or fixed number of neighbors

Item-based CF

- Scalability issues arise with U2U if many more users than items
 (m >> n, m = |users|, n = |items|)
 - e.g. Amazon.com
 - Space complexity O(m²) when pre-computed
 - Time complexity for computing Pearson O(m²n)
- High sparsity leads to few common ratings between two users
- Basic idea: "Item-based CF exploits relationships between items first, instead of relationships between users"

Item-based collaborative filtering

- Basic idea:
 - Use the similarity between items (and not users) to make predictions
 - Treat ratings as item features (big assumption)
- Example:
 - Look for items that are similar to Item5
 - Take Alice's ratings for these items to predict the rating for Item5

	ltem1	ltem2	ltem3	ltem4	ltem5
Alice	5	3	4	4	?
User1	3	1	2	3	3
User2	4	3	4	3	5
User3	3	3	1	5	4
User4	1	5	5	2	1

The cosine similarity measure

- Produces better results in item-to-item filtering - for some datasets, no consistent picture in literature
- Ratings are seen as vector in n-dimensional space
- Similarity is calculated based on the angle between the vectors

$$sim(\vec{a}, \vec{b}) = \frac{\vec{a} \cdot \vec{b}}{\mid \vec{a} \mid * \mid \vec{b} \mid}$$

- Adjusted cosine similarity
 - take average user ratings into account, transform the original ratings
 - U: set of users who have rated both items a and b

$$sim(a,b) = \frac{\sum_{u \in U} (r_{u,a} - \overline{r_u}) (r_{u,b} - \overline{r_u})}{\sqrt{\sum_{u \in U} (r_{u,a} - \overline{r_u})^2} \sqrt{\sum_{u \in U} (r_{u,b} - \overline{r_u})^2}}$$

Pre-processing for item-based filtering

- Item-based filtering does not solve the scalability problem itself
- Pre-processing approach by Amazon.com (in 2003)
 - Calculate all pair-wise item similarities in advance
 - The neighborhood to be used at run-time is typically rather small, because only items are taken into account which the user has rated
 - Item similarities are supposed to be more stable than user similarities
- Memory requirements
 - Up to N² pair-wise similarities to be memorized (N = number of items) in theory
 - In practice, this is significantly lower (items with no co-ratings)
 - Further reductions possible
 - Minimum threshold for co-ratings (items, which are rated at least by *n* users)
 - Limit the size of the neighborhood (might affect recommendation accuracy)

More about ratings

- Pure CF-based systems only rely on the rating matrix
- Explicit ratings
 - Most commonly used (1 to 5, 1 to 7 Likert response scales)
 - Research topics
 - "Optimal" granularity of scale; indication that 10-point scale is better accepted in movie domain
 - Multidimensional ratings (multiple ratings per movie)
 - Challenge
 - Users not always willing to rate many items; sparse rating matrices
 - How to stimulate users to rate more items?
- Implicit ratings
 - clicks, page views, time spent on some page, demo downloads ...
 - Can be used in addition to explicit ones; question of correctness of interpretation

Data sparsity problems

- Cold start problem
 - How to recommend new items? What to recommend to new users?
- Straightforward approaches
 - Ask/force users to rate a set of items
 - Use another method (e.g., content-based, demographic or simply non-personalized) in the initial phase
- Alternatives
 - Use better algorithms (beyond nearest-neighbor approaches)
 - Example:
 - In nearest-neighbor approaches, the set of sufficiently similar neighbors might be to small to make good predictions
 - Assume "transitivity" of neighborhoods

Example algorithms for sparse datasets

- Recursive CF
 - Assume there is a very close neighbor *n* of u who however has not rated the target item *i* yet.
 - Idea:
 - Apply CF-method recursively and predict a rating for item *i* for the neighbor
 - Use this predicted rating instead of the rating of a more distant direct neighbor

Contrast – u2u vs i2i

- p = avg number of ratings per user
- q = avg number of ratings per item

Contrast – u2u vs i2i

	U2U	121	
Accuracy	U << I	U >> I	
Efficiency	U << I	U >> I	
Stability	Static users	Static items	
Justifiability		Always better	
Serendipity	Always better		

Shared problems: coverage, sparsity

Memory-based vs model-based approaches

- Both u2u and i2i CF are "memory-based"
 - the rating matrix is directly used to find neighbors / make predictions
 - does not scale for most real-world scenarios
 - large e-commerce sites have tens of millions of customers and millions of items
- Model-based approaches
 - based on an offline pre-processing or "model-learning" phase
 - at run-time, only the learned model is used to make predictions
 - models are updated / re-trained periodically
 - large variety of techniques used
 - model-building and updating can be computationally expensive

Model-based approaches

- Plethora of different techniques proposed in the last years, e.g.,
 - Matrix factorization techniques, statistics
 - singular value decomposition, principal component analysis
 - Association rule mining
 - compare: shopping basket analysis
 - Probabilistic models
 - clustering models, Bayesian networks, probabilistic Latent Semantic Analysis
 - Various other machine learning approaches
- Costs of pre-processing
 - Usually not discussed
 - Incremental updates possible?

CFs using matrix factorization

- Basic idea: Trade more complex offline model building for faster online prediction generation
- Singular Value Decomposition for dimensionality reduction of rating matrices
 - Captures important factors/aspects and their weights in the data
 - factors can be genre, actors but also non-understandable ones
 - Assumption that k dimensions capture the signals and filter out noise (K = 20 to 100)
- Constant time to make recommendations
- Approach also popular in IR (Latent Semantic Indexing), data compression, ...

SVD: basic intuition

l items

U users

Minimize err(k) = $|R - PQ|^2_{F}$ $= \sum_{u,i} (r_{ui} - p_u q_i)^2 \qquad \text{Equivalent to SVD}$

Linear transformations

- F(u + v) = F(u) + F(v)
- F(cu) = cF(u)

Scale

Shear

Matrices represent linear transforms

- A linear map Rn → Rm is equivalent to an nby-m matrix
- What does this matrix do?

$$\mathbf{A} = egin{bmatrix} a & c \ b & d \end{bmatrix}$$

- It transforms the unit square
 - Transformation clarifies the role of matrices as linear maps

Matrices as instruction lists

Eigenvalues and eigenvectors

- Eigenvalue definition $Ax = \lambda x$
- Calculation: solutions of $|A \lambda I| = 0$
- Apply solutions to original equation to calculate eigenvectors (A- λl)v = 0
- Set of eigenvectors, along with the null set, forms the *eigenbasis* of a matrix
- What does it mean?
- Special simplified instruction set that is equivalent to the original instruction set
 - but implemented using only scaling

Eigendecomposition

- Writing out the transformation operation using its basic components
- $A = ELE^{-1}$
 - E is a matrix with each column an eigenvector
 - L is a diagonal matrix, with each non-zero element an eigenvalue
- Can arrange this in decreasing order of eigenvalue magnitude
- What happens when we set the smaller eigenvalues to zero?

Latent factor models via matrices

- Factorize n x n matrix A as a product of two matrices B,C such that
 - $B = EL^{1/2}$
 - $C^{T} = E^{-1}L^{1/2}$
- Can approximate A using B_k and C_k that consider only the top k eigenvalues
 - $err(k) = |A BC^T|^2_F$
- Can generalize to non-square matrices
 - Singular value decomposition
 - Decompose A into $U\Sigma V^T$
 - U,V are matrices of singular vectors, Σ is a diagonal matrix that contains singular values
 - Singular vectors of A are eigenvectors of A^TA and AA^T
 - Non-zero singular values of A are square roots of non-zero eigenvalues of AA^T

SVD: basic intuition

l items

U users

Minimize err(k) = $|R - PQ|^2_{F}$ $= \sum_{u,i} (r_{ui} - p_u q_i)^2 \qquad \text{Equivalent to SVD}$

Typical SVD application

$$\boldsymbol{M}_{k} = \boldsymbol{U}_{k} \times \boldsymbol{\Sigma}_{k} \times \boldsymbol{V}_{k}^{T}$$

U _k	Dim1	Dim2	
Alice	0.47	-0.30	
Bob	-0.44	0.23	
Mary	0.70	-0.06	
Sue	0.31	0.93	

	- 100 ·				
V_k^T					
Dim1	-0.44	-0.57	0.06	0.38	0.57
Dim2	0.58	-0.66	0.26	0.18	-0.36

SVD concerns

- User-rating matrix is often sparse
- How to interpret missing values?

– Interpreting as 0 induces bias

- Filling with default values also induces bias
- One solution- regularized learning
- $err(k) = \sum_{u,i \in R} (r_{ui} p_u q_i)^2 + \gamma (||\boldsymbol{p}_u||^2 + ||\boldsymbol{q}_i||^2)$

Collaborative Filtering Issues

- Pros: 单
 - well-understood, works well in some domains, no knowledge engineering required
- Cons:⁹
 - requires user community, sparsity problems, no integration of other knowledge sources, no explanation of results
- What is the best CF method?
 - In which situation and which domain? Inconsistent findings; always the same domains and data sets; differences between methods are often very small (1/100)
- How to evaluate the prediction quality?
 - MAE / RMSE: What does an MAE of 0.7 actually mean?
 - Serendipity: Not yet fully understood
- What about multi-dimensional ratings?

Other methods: association rule mining

• Commonly used for shopping behavior analysis

aims at detection of rules such as

"If a customer purchases baby-food then he also buys diapers in 70% of the cases"

- Association rule mining algorithms
 - can detect rules of the form X => Y (e.g., baby-food => diapers) from a set of sales transactions D = {t₁, t₂, ... t_n}
 - measure of quality: support, confidence

Other methods: Probabilistic methods

- Treat users as mixtures of topics
- Treat topics as distribution over item sample frequencies
- Run LDA?
- What could go wrong?