
Collaborative filtering

Nisheeth

Collaborative Filtering (CF)

• The most prominent approach to generate
recommendations
– used by large, commercial e-commerce sites

– well-understood, various algorithms and variations exist

– applicable in many domains (book, movies, DVDs, ..)

• Approach
– use the "wisdom of the crowd" to recommend items

• Basic assumption and idea
– Users give ratings to catalog items (implicitly or explicitly)

– Customers who had similar tastes in the past, will have
similar tastes in the future

User-based nearest-neighbor
collaborative filtering

• The basic technique:

– Given an "active user" (Alice)
and an item I not yet seen by
Alice

– The goal is to estimate Alice's
rating for this item, e.g., by
• find a set of users (peers) who

liked the same items as Alice
in the past and who have
rated item I

• use, e.g. the average of their
ratings to predict, if Alice will
like item I

• do this for all items Alice has
not seen and recommend the
best-rated

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User
1

3 1 2 3 3

User
2

4 3 4 3 5

User
3

3 3 1 5 4

User
4

1 5 5 2 1

User-based nearest-neighbor
collaborative filtering

• Some first questions

– How do we measure similarity?

– How many neighbors should we consider?

– How do we generate a prediction from the
neighbors' ratings?

Measuring user similarity

• A popular similarity measure in user-based CF:
Pearson correlation

a, b : users

ra,p : rating of user a for item p

P : set of items, rated both by a and b

Possible similarity values between -1 and 1;
 = user's average ratings

𝒓𝒂, 𝒓𝒃

Pearson correlation

• Takes differences in rating behavior into account

• Works well in usual domains, compared with alternative measures
– such as cosine similarity

0

1

2

3

4

5

6

Item1 Item2 Item3 Item4

Ratings

Alice

User1

User4

Making predictions

• A common prediction function:

• Calculate, whether the neighbors' ratings for the
unseen item i are higher or lower than their average

• Combine the rating differences – use the similarity as a
weight

• Add/subtract the neighbors' bias from the active user's
average and use this as a prediction

Making recommendations

• Making predictions is typically not the ultimate
goal

• Usual approach (in academia)
– Rank items based on their predicted ratings

• However
– This might lead to the inclusion of (only) niche items
– In practice also: Take item popularity into account

• Approaches
– "Learning to rank"

• Optimize according to a given rank evaluation metric (see
later)

Improving the metrics / prediction
function

• Not all neighbor ratings might be equally "valuable"
– Agreement on commonly liked items is not so informative as

agreement on controversial items
– Possible solution: Give more weight to items that have a higher

variance

• Value of number of co-rated items
– Use "significance weighting", by e.g., linearly reducing the

weight when the number of co-rated items is low

• Case amplification
– Intuition: Give more weight to "very similar" neighbors, i.e.,

where the similarity value is close to 1.

• Neighborhood selection
– Use similarity threshold or fixed number of neighbors

Item-based CF

• Scalability issues arise with U2U if many more users
than items
(m >> n , m = |users|, n = |items|)
– e.g. Amazon.com
– Space complexity O(m2) when pre-computed
– Time complexity for computing Pearson O(m2n)

• High sparsity leads to few common ratings between

two users

• Basic idea: "Item-based CF exploits relationships
between items first, instead of relationships between
users"

Item-based collaborative filtering

• Basic idea:
– Use the similarity between items (and not users) to make predictions
– Treat ratings as item features (big assumption)

• Example:
– Look for items that are similar to Item5
– Take Alice's ratings for these items to predict the rating for Item5

Item1 Item2 Item3 Item4 Item5

Alice 5 3 4 4 ?

User1 3 1 2 3 3

User2 4 3 4 3 5

User3 3 3 1 5 4

User4 1 5 5 2 1

The cosine similarity measure

• Produces better results in item-to-item filtering
– for some datasets, no consistent picture in literature

• Ratings are seen as vector in n-dimensional space
• Similarity is calculated based on the angle between the

vectors

• Adjusted cosine similarity
– take average user ratings into account, transform the

original ratings
– U: set of users who have rated both items a and b

Pre-processing for item-based filtering

• Item-based filtering does not solve the scalability problem itself
• Pre-processing approach by Amazon.com (in 2003)

– Calculate all pair-wise item similarities in advance
– The neighborhood to be used at run-time is typically rather small,

because only items are taken into account which the user has rated
– Item similarities are supposed to be more stable than user similarities

• Memory requirements
– Up to N2 pair-wise similarities to be memorized (N = number of items)

in theory
– In practice, this is significantly lower (items with no co-ratings)
– Further reductions possible

• Minimum threshold for co-ratings (items, which are rated at least by n users)
• Limit the size of the neighborhood (might affect recommendation accuracy)

More about ratings

• Pure CF-based systems only rely on the rating matrix
• Explicit ratings

– Most commonly used (1 to 5, 1 to 7 Likert response scales)
– Research topics

• "Optimal" granularity of scale; indication that 10-point scale is better
accepted in movie domain

• Multidimensional ratings (multiple ratings per movie)

– Challenge
• Users not always willing to rate many items; sparse rating matrices
• How to stimulate users to rate more items?

• Implicit ratings
– clicks, page views, time spent on some page, demo downloads …
– Can be used in addition to explicit ones; question of correctness of

interpretation

Data sparsity problems

• Cold start problem
– How to recommend new items? What to recommend to new

users?

• Straightforward approaches
– Ask/force users to rate a set of items
– Use another method (e.g., content-based, demographic or

simply non-personalized) in the initial phase

• Alternatives
– Use better algorithms (beyond nearest-neighbor approaches)
– Example:

• In nearest-neighbor approaches, the set of sufficiently similar
neighbors might be to small to make good predictions

• Assume "transitivity" of neighborhoods

Example algorithms for sparse
datasets

• Recursive CF

– Assume there is a very close neighbor n of u who
however has not rated the target item i yet.

– Idea:

• Apply CF-method recursively and predict a rating for
item i for the neighbor

• Use this predicted rating instead of the rating of a more
distant direct neighbor

Contrast – u2u vs i2i

p = avg number of ratings per user
q = avg number of ratings per item

Contrast – u2u vs i2i

U2U I2I

Accuracy |U|<<|I| |U|>>|I|

Efficiency |U|<<|I| |U|>>|I|

Stability Static users Static items

Justifiability Always better

Serendipity Always better

Shared problems: coverage, sparsity

Memory-based vs model-based
approaches

• Both u2u and i2i CF are "memory-based"
– the rating matrix is directly used to find neighbors / make

predictions
– does not scale for most real-world scenarios
– large e-commerce sites have tens of millions of customers and

millions of items

• Model-based approaches
– based on an offline pre-processing or "model-learning" phase
– at run-time, only the learned model is used to make predictions
– models are updated / re-trained periodically
– large variety of techniques used
– model-building and updating can be computationally expensive

Model-based approaches

• Plethora of different techniques proposed in the last
years, e.g.,
– Matrix factorization techniques, statistics

• singular value decomposition, principal component analysis

– Association rule mining
• compare: shopping basket analysis

– Probabilistic models
• clustering models, Bayesian networks, probabilistic Latent

Semantic Analysis

– Various other machine learning approaches

• Costs of pre-processing
– Usually not discussed
– Incremental updates possible?

CFs using matrix factorization

• Basic idea: Trade more complex offline model
building for faster online prediction generation

• Singular Value Decomposition for dimensionality
reduction of rating matrices
– Captures important factors/aspects and their weights in the data

– factors can be genre, actors but also non-understandable ones

– Assumption that k dimensions capture the signals and filter out noise (K = 20 to 100)

• Constant time to make recommendations

• Approach also popular in IR (Latent Semantic
Indexing), data compression, …

SVD: basic intuition

I items

U
 u

se
rs

U
 u

se
rs

k factors

k
fa

ct
o

rs

I items

R

P

Q

Minimize err(k) = |R – PQ|2 F

= 𝑟𝑢𝑖 − 𝑝𝑢𝑞𝑖
2

𝑢,𝑖

 Equivalent to SVD

Linear transformations

• F(u + v) = F(u) +F(v)

• F(cu) = cF(u)

Matrices represent linear transforms

• A linear map Rn  Rm is equivalent to an n-
by-m matrix

• What does this matrix do?

• It transforms the unit square

– Transformation clarifies the role of matrices as
linear maps

Matrices as instruction lists

https://en.wikipedia.org/wiki/File:VerticalShear_m=1.25.svg
https://en.wikipedia.org/wiki/File:Flip_map.svg
https://en.wikipedia.org/wiki/File:Squeeze_r=1.5.svg
https://en.wikipedia.org/wiki/File:Scaling_by_1.5.svg
https://en.wikipedia.org/wiki/File:Rotation_by_pi_over_6.svg

Eigenvalues and eigenvectors

• Eigenvalue definition Ax = λx
• Calculation: solutions of |A - λI| = 0
• Apply solutions to original equation to calculate

eigenvectors (A- λI)v = 0
• Set of eigenvectors, along with the null set, forms

the eigenbasis of a matrix
• What does it mean?
• Special simplified instruction set that is

equivalent to the original instruction set
– but implemented using only scaling

Eigendecomposition

• Writing out the transformation operation using
its basic components

• A = ELE-1

– E is a matrix with each column an eigenvector

– L is a diagonal matrix, with each non-zero element an
eigenvalue

• Can arrange this in decreasing order of
eigenvalue magnitude

• What happens when we set the smaller
eigenvalues to zero?

Latent factor models via matrices

• Factorize n x n matrix A as a product of two matrices B,C such that
– B = EL1/2

– CT = E-1L1/2

• Can approximate A using Bk and Ck that consider only the top k
eigenvalues
– err(k) = |A – BCT|2 F

• Can generalize to non-square matrices
– Singular value decomposition
– Decompose A into UΣVT

– U,V are matrices of singular vectors, Σ is a diagonal matrix that
contains singular values
• Singular vectors of A are eigenvectors of ATA and AAT

• Non-zero singular values of A are square roots of non-zero eigenvalues of AAT

SVD: basic intuition

I items

U
 u

se
rs

U
 u

se
rs

k factors

k
fa

ct
o

rs

I items

R

P

Q

Minimize err(k) = |R – PQ|2 F

= 𝑟𝑢𝑖 − 𝑝𝑢𝑞𝑖
2

𝑢,𝑖

 Equivalent to SVD

Typical SVD application

Vk
T

Dim1 -0.44 -0.57 0.06 0.38 0.57

Dim2 0.58 -0.66 0.26 0.18 -0.36

Uk Dim1 Dim2

Alice 0.47 -0.30

Bob -0.44 0.23

Mary 0.70 -0.06

Sue 0.31 0.93 Dim1 Dim2

Dim1 5.63 0

Dim2 0 3.23

T

kkkk VUM 

k

• SVD:

• Prediction:

 = 3 + 0.84 = 3.84

)()(ˆ EPLVAliceUrr T
kkkuui 

SVD concerns

• User-rating matrix is often sparse

• How to interpret missing values?

– Interpreting as 0 induces bias

– Filling with default values also induces bias

• One solution- regularized learning
• 𝑒𝑟𝑟 𝑘 = 𝑟𝑢𝑖 − 𝑝𝑢𝑞𝑖

2 + 𝛾 𝒑𝑢
2 + 𝒒𝑖

2
𝑢,𝑖 ∈ 𝑅

Collaborative Filtering Issues

• Pros:
– well-understood, works well in some domains, no knowledge engineering required

• Cons:
– requires user community, sparsity problems, no integration of other knowledge sources,

no explanation of results

• What is the best CF method?
– In which situation and which domain? Inconsistent findings; always the same domains

and data sets; differences between methods are often very small (1/100)

• How to evaluate the prediction quality?
– MAE / RMSE: What does an MAE of 0.7 actually mean?

– Serendipity: Not yet fully understood

• What about multi-dimensional ratings?

Other methods: association rule
mining

• Commonly used for shopping behavior analysis
– aims at detection of rules such as

 "If a customer purchases baby-food then he also
buys diapers
in 70% of the cases"

• Association rule mining algorithms
– can detect rules of the form X => Y (e.g., baby-food

=> diapers) from a set of sales transactions D = {t1,
t2, … tn}

– measure of quality: support, confidence

Other methods: Probabilistic methods

• Treat users as mixtures of topics

• Treat topics as distribution over item sample
frequencies

• Run LDA?

• What could go wrong?

